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Abstract. A single crystal of the metal–radical complex{Mn(hfac)2}3(3R)2, where(3R) is
a trisnitroxide with a quartet ground state, was grown. The magnetization was measured
along the principal crystallographic axes in the range 1.8–300 K. The compound was found
to order ferrimagnetically atTC = 45± 1 K with collinear antiparallel alignment of the Mn and
(3R) magnetic spins along thec-direction. The paramagnetic susceptibility was treated in the
quantum–classical approximation by taking into account the weak positive exchange interaction
between the Mn(2) ions and one-dimensional ferrimagnetic· · · –Mn(1)–(3R)–Mn(1)– · · · chains,
in which trimer molecules composed of one Mn(1) and two 1/2 spins of different triradicals can
be isolated. The anisotropy constants were evaluated and the anisotropy energy was estimated.
Anisotropy of the paramagnetic susceptibility, which can be detected up to 55 K, was observed.
The anisotropic effects are attributed both to the single-ion splitting of the Mn energy levels and
the dipole–dipole interaction between the magnetic spins.

1. Introduction

The study of compounds made up of one-dimensional (1D) ferrimagnetic chains is of
particular interest in the field of low-dimensional magnetism. Due to a non-zero net
magnetization, their behaviour in the ordered state resembles that of three-dimensional (3D)
ferro/ferrimagnets, at the same time showing in the paramagnetic state distinctive properties
inherent to antiferromagnetic-chain compounds, e.g., a minimum inχT versusT at elevated
temperatures (Coronadoet al 1993). Various bimetallic ferrimagnetic chains have been
reported on in the last few years (Peiet al 1986a, b, 1987, 1988, Coronadoet al 1989,
1993). Among these compounds, those containing bimetallic manganese have the strongest
magnetic interactions due to the large (5/2) spin of Mn2+, and they often show long-range
magnetic order. Since most of the magnetic molecular crystals have low magnetic ordering
temperatures, their magnetic anisotropy has been studied mainly by analysing the anisotropy
of the magnetic susceptibility (see Carlin (1986) and references therein). Borrãs-Almenar
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et al (1991) pointed out the importance of the single-ion mechanism in the two-sublattice
manganese chain compound MnMn(EDTA) × 9H2O on the basis of measurements of the
angular dependence of the ESR spectra. Nevertheless, they mentioned that the single-ion
mechanism alone cannot account for the anisotropy of the magnetic susceptibility of this
compound and some contribution from the dipole–dipole interaction was also assumed.

Figure 1. The structure of (3R).

Figure 2. Here we show the crystal structure of the three-dimensional metal–radical complex
{Mn(hfac)2}3(3R)2. The CF3 and(CH3)C groups are not shown, for clarity.a, b andc denote
the orthorhombic crystal axes. The Mn(1) and Mn(2) ions are shown by filled circles.

Recently a number of new metal–radical complexes of bivalent Mn2+ with bisnitroxide
(2R) and trisnitroxide (3R) were synthesized and characterized (Inoue and Iwamura
1994a, b, Inoueet al 1995, Inoue and Iwamura 1996, Inoueet al 1996). They show rather
versatile magnetic properties depending on the chemical formula and crystal structure. While
the {Mn(hfac)2}(2R) complexes with the biradical (2R) form one-dimensional chains and
order ferro/ferrimagnetically at low temperatures∼5.5 K (Inoue and Iwamura 1994b, Inoue
et al 1995), the three-dimensional compound{Mn(hfac)2}3(3R)2 where (3R) is a tris{3-tert-
butyl-5(T-oxy-tert-butylamino)phenyl}nitroxide triradical (see figure 1) has a comparatively
high Curie temperature of about 45 K and a high value of the low-temperature spont-
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Figure 3. Magnetization curves of the{Mn(hfac)2}3(3R)2 metal–radical complex at different
temperatures. The inset shows the temperature variation of the magnetization atH = 10 Oe
aroundTC.

aneous magnetizationMS (9 µB/f.u.) (Inoue et al 1996). This complex crystallizes in an
orthorhombic system withPnn2 space group and molecular formula Mn3F36O18N6C86H90

(Z = 2). A fragment of its crystal structure is shown in figure 2. The oxygen atoms
of the terminal nitroxide group of the triradical (3R) are ligated to two manganese ions
(1a and 1b) to form a 1D chain in thebc-plane of the crystal. Mn ions are attached to
two nitroxide oxygens from two different triradical molecules in atrans-disposition, so the
trisnitroxide molecules are in a zigzag orientation along the chain. The middle nitroxide
group of the ligand molecule (3R) in the chain is used to link the adjacent chains extended
in the b/−c diagonal direction through a third Mn2+ ion (2). The two nitroxide oxygens
are in acis-configuration and the two chains are bridged with the intersecting mean angle
of 54.4◦ establishing a parallel cross-shaped 3D polymeric network.

Magnetization measurements have shown that the{Mn(hfac)2}3(3R)2 complex has
a considerable magnetic anisotropy possibly of a uniaxial type (Inoue and Iwamura
1994b, Inoueet al 1995). However, the study of the anisotropic characteristics of
{Mn(hfac)2}3(3R)2 and, in particular, a determination of the anisotropy energy along
different crystallographic orientations was not performed in this work. An important problem
connected with this complex consists in the determination of the relative strengths of
different exchange interactions which specify its temperature-dependent magnetic properties.
With the aim of investigating the magnetic properties of{Mn(hfac)2}3(3R)2, in this work
a single crystal of this complex was grown and its magnetization was studied along the
three principal axes below and above the Curie temperature. From analysis of these
data, the exchange interactions and anisotropy constants were evaluated; different sources
contributing to the anisotropy energy are then discussed.
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2. Experimental details

The single crystal of the{Mn(hfac)2}3(3R)2 complex was grown by the evaporation
technique in a solution ofn-heptane, diethyl ether and small amount of chloroform at
0 ◦C (Inoueet al 1996). The crystal structure was measured by using a Rigaku AFC7R
diffractometer with graphite-monochromated Mo Kα radiation and a 12 kW rotating anode
tube. The lattice parameters were found to take the valuesa = 17.82(1) Å, b = 24.367(4) Å
and c = 12.522(2) Å. The magnetization measurements were performed in a SQUID
magnetometer MPMS-7 over the temperature range 1.8–300 K and in fields up to 7 T. The
magnetometer was equipped with a rotation mechanism, which allowed us to rotate the
single-crystalline sample during the measurements.

Figure 4. The temperature dependence of the spontaneous and sublattice magnetizationsMS,
MMn andM3R (for the calculated dependences, see the text) and inverse paramagnetic suscept-
ibility of {Mn(hfac)2}3(3R)2.

3. Experimental data

In figure 3 the magnetic isotherms are shown for the{Mn(hfac)2}3(3R)2 complex at
different temperatures in the magnetically ordered region measured along the easy axis
c. They are characterized by very narrow hysteresis and a monotonic decrease of the
saturation magnetization. The low-temperature value of the saturation magnetization,
8.9 µB/f.u., corresponds well to a collinear ferrimagnetic structure if one takesµMn = 5 µB

and µ3R = 3 µB. This confirms the spin states of Mn2+ (5/2) and trisnitroxide (3/2)
established earlier (Inoueet al 1996) as well as the collinear ferrimagnetic structure of
{Mn(hfac)2}3(3R)2. The temperature dependence of the magnetization traced at a constant
field of 10 Oe changes sharply at 45± 1 K (see the inset in figure 3), which was identified
as the Curie temperature.

In figure 4 we show the temperature dependence of the spontaneous magnetization,MS,
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Figure 5. Magnetization curves of{Mn(hfac)2}3(3R)2 at 1.8 and 25 K along the three principal
crystallographic axes.

of {Mn(hfac)2}3(3R)2. The values ofMS evaluated from the measurements along different
axes were equal to each other, i.e. no anisotropy of the saturation magnetization is observed.
As can be seen,MS falls monotonically with increasing temperature. This dependence does
not follow the Brillouin functionB3/2 expected for simple 3D ferromagnets if one assumes
each Mn2+ ion to be antiferromagnetically coupled with the two 1/2 spins of different
triradicals to form basic molecular species withS = 3/2. In fact,MS falls even faster than
B5/2(T ).

Within the range of application of the 3D approximation for the magnetic interactions,
it is also possible to consider the net magnetization as a difference between the Mn and
(3R) radical sublattice magnetizations,MS(T ) = MMn(T ) −M3R(T ). Assuming that the
temperature dependence of the Mn-sublattice magnetization follows the Brillouin function
B5/2(T ), the sublattice magnetization of the nitroxide triradical species can be written as
M3R(T ) = |MS(T )−15B5/2(T /TC)|, whereTC is taken as 45 K. The temperature variation
of M3R evaluated by using this equation is depicted in figure 4 together with the Brillouin
function B5/2(T ) normalized to 15µB used for the Mn sublattice (dotted lines). The
magnetization of the (3R) sublattice thus obtained increases with the temperature increasing
from 1.8 K and passes over a maximum(6.4 µB) at 15 K. This is inconsistent with the
low-temperature value 6µB. The next simple approach, usingB3/2 for the temperature
dependence of the (3R)-sublattice magnetization, gives a monotonic temperature variation
for MMn(T ), although distinct fromB5/2 (solid lines in figure 4).

The temperature dependence of the inverse susceptibility,χ−1, of {Mn(hfac)2}3(3R)2
shown in figure 4 varies non-linearly up to the highest temperature measured, i.e. does
not follow the Curie law, and neither does it show the negative curvature expected for 3D
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ferrimagnets (the Ńeel law).
In figure 5 the magnetization curves along the three principal crystallographic axes are

presented for the{Mn(hfac)2}3(3R)2 complex. As can be seen, theb-axis is the hard
direction of magnetization, and thea-axis corresponds accordingly to the intermediate
direction. This hierarchy is retained up to the Curie temperature.

4. Discussion

4.1. Determination of exchange interactions

The exchange interactions determining the isotropic magnetic properties of the
{Mn(hfac)2}3(3R)2 compound were evaluated from analysis of the temperature dependence
of the paramagnetic susceptibility. All of the attempts to describe this dependence within the
framework of 3D ferromagnetic or ferrimagnetic models by combining different magnetic
sublattices made up either from Mn2+ and (3R) molecules or (̄1/2, 5/2, 1̄/2) species formed
by Mn2+ and nitroxide groups were unsuccessful. This accounted for the effect of a
magnetic low dimensionality that the{Mn(hfac)2}3(3R)2 compound exhibits at least in
the paramagnetic region. Although this complex forms a well defined three-dimensional
network with respect to the chemical bondings, the spin–spin couplings between Mn2+ and
triradical species can be different along different directions, which can in turn modify the
paramagnetic behaviour ofχ(T ) substantially in the temperature range below 300 K.

The paramagnetic susceptibility of{Mn(hfac)2}3(3R)2 was examined by using a model
in which the triradicals were assumed to form 1D ferrimagnetic chains with the Mn(1) ions in
the positions1a and1b (figure 2), while the Mn(2) ions in positions2 link them through the
exchange interaction with the middle nitroxide group of (3R). This assumption means that
the exchange interaction between Mn(1) and the terminal nitroxide group is substantially
stronger than the interaction between Mn(2) and the middle nitroxide group of (3R). A
similar chain compound, equimolar{Mn(hfac)2}(3R), made up of bivalent manganese and
nitroxide triradicals is known to show a magnetic one dimensionality (Inoueet al 1995).

In fact, the{Mn(hfac)2}3(3R)2 complex is not a true 1D-chain compound because the
magnetic contribution of the Mn(2) ions linking the· · · –Mn(1)–(3R)–Mn(1)– · · · chains
can be neither neglected nor considered as a kind of paramagnetic impurity. Moreover, the
1D chains themselves have a four-spin periodicity which prevents one from performing any
exhaustive analysis by the use of existing analytical expressions derived for ferrimagnetic
chains with two-spin periodicity (Seiden 1983, Drillonet al 1983, Verdagueret al 1984,
Pei et al 1988, Qiang Xuet al 1988, Coronadoet al 1989). Therefore the approach
applied to interpret the paramagnetic susceptibility of{Mn(hfac)2}3(3R)2 contains some
simplifications. The complex{Mn(hfac)2}3(3R)2 was on the whole considered as a two-
sublattice ferrimagnet formed by isolated Mn(2) ions and· · · –Mn(1)–(3R)–Mn(1)– · · ·
chains with a positive intersublattice exchange interaction. Then, in the molecular-field
approximation the low-field paramagnetic susceptibility of this compound can be written in
the conventional form

χtot = (CMn + Cch)T + CMnCch(2λ′ − λMn − λch)

T 2− (CMnλMn + Cchλch)T − CMnCch[(λ′)2− λMnλch]
(1)

whereλ′ is the intersublattice molecular-field coefficient,λMn andλch are the intrasublattice
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molecular-field coefficients for the Mn(2) and 1D-chain sublattices and

CMn = N g
2µ2

B

3k
SMn(SMn + 1)

Cch = χchT

(2)

are accordingly the Curie constants of the Mn(2) and chain sublattices. In equations (1) and
(2) the intrachain exchange interaction is included inCch, which is hence a temperature-
dependent quantity described as ‘constant’ for convenience only.

In order to calculate the temperature dependence ofχchT , the · · · –Mn(1)–(3R)–Mn(1)–
· · · chain was approximated by a model in which molecular species having stable spins in
the temperature region up to 300 K were isolated. According to the chain structure, two
possible configurations were considered:

(i) a ferrimagnetic (5/2–3/2) chain formed of nitroxide radicals (3R) with SR = 3/2
antiferromagnetically coupled with Mn(1); and

(ii) a ferrimagnetic (3/2–1/2) chain formed of the trimeric spin species made up of
one Mn(1) ion and two terminal nitroxide groups of different triradicals(STR = 3/2)
antiferromagnetically coupled with the middle nitroxide group spin(s = 1/2).

For the tentative analysis, the chain susceptibility was considered in the Heisenberg
classical–classical spin approximation by using the expression (Coronadoet al 1989)

(χchT )classical= Nµ2
B

3k

(
g2
+

1+ U
1− U + g

2
−

1− U
1+ U

)
(3)

where the following notation is used (all of the exchange interactions are represented in this
work in the form−2JSiSj ):

K = coth
T0

T
− T

T0

T0 =
(

2Jch

k

)√
S1(S1+ 1)S2(S2+ 1)

g± = 1

2
(g1± g2) gi = 2

√
Si(Si + 1) (i = 1, 2)

all of the other symbols having their usual meaning. Note that hereJch is an effective
parameter for describing the intrachain Mn(1)–(3R) negative exchange and will not be
considered as an exchange integral.

The least-squares fitting procedure used to fit equation (1) to the experimental data by
the use of the complete set of parametersλ′, λMn, λch and 2Jch/k is rather questionable.
Therefore, the intrasublattice exchange interactions were set to zero for the preliminary fits.
This assumption is plausible since no exchange paths can be found for the Mn(2)–Mn(2)
and chain–chain interactions. Then the stability of the solutions was checked by letting
λMn and λch vary freely. For the (5/2–3/2) spin configuration no satisfactory fitting was
possible with negative values of 2Jch/k and positiveλ′-values. In contrast, the (3/2–1/2)
configuration gives a good fit forχtotT over a rather wide temperature range, 70–300 K,
with reasonable values of 2Jch/k andλ′, andλMn ≈ λch = 0± 0.5 K. The results obtained
on applying this procedure are listed in table 1.

The determination of the exchange interaction parameters for the (3/1–1/2) configuration
was finally carried out in the quantum–classical chain approximation by using the analytical
expression for the paramagnetic susceptibility of a ferrimagnetic chain derived by Seiden
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Table 1. Exchange parameters of{Mn(hfac)2}3(3R)2 and {Mn(hfac)2}(3R): the numbers of
nearest neighbours for the intersublattice exchange interaction 2J ′/k are taken as 2 and 6,
respectively.

Model 2Jch/k (K) λ′ (emu mol−1) 2J ′/k (K) JTr/k (K)

{Mn(hfac)2}3(3R)2
Classical–classical−900± 30 + 5.9± 0.4 + 4.4 STr = 3/2
Quantum–classical−520± 20 + 5.2± 0.4 + 3.9 STr = 3/2
Quantum–classical−520± 20 + 5.1± 0.4 + 3.8 6 −350

{Mn(hfac)2}(3R)

Quantum–classical −80± 10 0 0 −135± 15
Quantum–classical−100± 10 −2.6± 0.3 −0.65 −120± 15

(1983) (see also Coronadoet al 1993):

(χchT )Qu = Nµ2
B

3k

{
STR(STR+ 1)+ 3

4

+ 2

1− P(γ ) [STR(STR+ 1)P (γ )− STRQ(γ )+ 0.25Q2(γ )]

}
. (4)

Hereγ = −2JchSTR/kT and

P(γ ) = (1+ 12γ−2) sinhγ − (5γ−1+ 12γ−3) coshγ − γ−1+ 12γ−3

sinhγ − γ−1 coshγ + γ−1

Q(γ ) = (1+ 2γ−2) coshγ − 2γ−1 sinhγ − 2γ−2

sinhγ − γ−1 coshγ + γ−1
.

Figure 6. The temperature dependence of the productχtotT of the {Mn(hfac)2}3(3R)2 complex
in the paramagnetic temperature range. Open circles show the experimental data; the solid and
dashed lines were calculated for the fixed trimer spinSTr = 3/2 in the quantum–classical and
classical–classical approximations, respectively.
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The best fits were found near the zero values forλMn and λch and the final fit was
again made with two variables. In figure 6 the calculated and experimental temperature
dependences ofχtotT for {Mn(hfac)2}3(3R)2 are compared. They are in good agreement
over a wide temperature range down to about 55 K. The parameters corresponding to
this procedure are given in table 1, too. The difference observed between the classical–
classical and quantum–classical approaches is not surprising. According to the calculations
of Coronadoet al (1989), the solutions for the two models start to differ belowT ≈ 2|Jch|/k,
i.e. for {Mn(hfac)2}3(3R)2 below about 250 K.

The results obtained show that the{Mn(hfac)2}3(3R)2 complex is characterized by
very strong intrachain interactions. The possibility of isolating trimeric spin species (1̄/2,
5/2, 1̄/2) in the · · · –Mn(1)–(3R)–Mn(1)– · · · chain indicates that the exchange interaction
between Mn(1) and the terminal nitroxide group substantially exceeds the interaction energy
between the NO groups within the (3R) radical, which is characterized by the exchange
integral 2J/k = +480 K (Ishida and Iwamura 1991).

4.2. The effect of intratrimer interaction

Due to the strong intratrimer exchange interaction, the model with a fixedSTR-value appears
to be applicable over the temperature range up to 300 K. However, this approach will fail at
temperatures higher than the intratrimer interaction parameterJTr/k. In order to reveal the
role of the intratrimer interaction in the temperature dependence ofχtotT , a fitting procedure
was carried out withST replaced by the effective moment of the (1̄/2, 5/2, 1̄/2) trimer:

µ2
Tr =

3k

Ng2µ2
B

(χTrT )

in equation (4). The exchange interactions in this trimer can be described by the isotropic
spin HamiltonianH = −2JTr(s1 · S2 + S2 · s3). The eigenvaluesE(ST, S13) of this
Hamiltonian areE(3/2, 1) = 7JTr, E(5/2, 1) = 2JTr, E(5/2, 0) = 0 andE(7/2, 1) =
−5JTr (whereST = S2+ S13 andS13 = s1+ s13). From these energies the equation for the
molar susceptibility of the trimer molecule (1̄/2, 5/2, 1̄/2) was found:

χTr = N
g2µ2

B

4kT
(5+ 4

16+ 5e−5JTr/kT + 5e−7JTr/kT

4+ 3e−5JTr/kT + 3e−7JTr/kT + 2e−12JTr/kT
) (5)

and a fit of equation (1) to the experimental data was made. The temperature variation
of χtotT for the {Mn(hfac)2}3(3R)2 complex appeared to be unaffected by the intratrimer
exchange interaction. In fact, a change of the fit parameters lies within the accuracy of the
procedure (see table 1). Hence,|JTr|/k was estimated to be larger than 350 K.

In figure 7 the temperature dependences ofχtotT calculated for{Mn(hfac)2}3(3R)2 by
using different sets of the exchange parameters are extrapolated into the high-temperature
region. As can be seen, the presence of the Mn(2) ferromagnetic sublattice does not eliminate
the minimum inχtotT expected for conventional 1D ferrimagnetic- or antiferromagnetic-
chain compounds. In contrast, the population of the excited states of the trimer makes the
minimum inχtotT , which is predicted to lie at about 500 K, more pronounced as compared
to the case of a stable biperiodical ferrimagnetic chain. The inset in figure 7 shows the
temperature dependence ofµ2

Tr calculated for the (̄1/2, 5/2, 1̄/2) trimer. The most prominent
change of the effective moment occurs in the temperature range 1.5 < kT/|JTr| < 5. In
this range the effect of trimerization must be the most significant.

The 1D-chain compound{Mn(hfac)2}(3R) is an appropriate object for applying the
above approach to in order to display the effect of trimerization. In this compound, the
1D chains made up of Mn2+ and triradicals (3R) are directly linked with each other by
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Figure 7. Here we show the high-temperature extrapolation ofχtotT versus temperature for the
{Mn(hfac)2}3(3R)2 complex calculated in different approximations forχchT : quantum–classical,
JTr/k = −350 K (1); classical–classical,JTr/k = −350 K (2); quantum–classical,STr = 3/2
(3); and classical–classical,STr = 3/2 (4). The inset shows the temperature dependence ofµ2

Tr
calculated for the (̄1/2, 5/2, 1̄/2) configuration by the use of equation (5).

nitroxide groups (Inoueet al 1995). It crystallizes in the monoclinicP21/c structure with
a = 10.137(3) Å, b = 19.426(5) Å, c = 27.187(7)Å andβ = 95.21(2)◦. BelowTN = 11 K
a transition into a 3D antiferromagnetic state occurs in this compound. The high-field
magnetization value 2µB/f.u. indicates that the Mn2+ (S = 5/2) and (3R) (S = 3/2)
moments within the chains are aligned antiparallel. In figure 7 the temperature dependence
of χT for {Mn(hfac)2}(3R) is given. AtTmin = 115 K the dependence shows a pronounced
characteristic minimum. Any attempts to fit equation (4) to the experimental curve by using
either (5/2–3/2) or (3/2–1/2) stable configurations were unsuccessful: fits cannot be made
either above or belowTmin.

Considering two different possibilities for trimerization,5/2–(1/2, 1/2, 1/2)–5/2 and1/2–
(1̄/2, 5/2, 1̄/2)–1/2, the latter configuration was found to describe quite well the experimental
data. The dashed line in figure 8 corresponds to the fitting procedure which neglects the
weak interchain interaction. It describes satisfactorily the experimental curve both above
and belowTmin. By introducing the interchain exchange parameterλ′, the agreement can
be substantially improved (the solid line in figure 8). The result of a three-parameter fitting,
although it cannot be considered as being unambiguously quantitative, shows that the low-
temperature behaviour ofχT obeys the above model as well. The exchange parameters of
{Mn(hfac)2}(3R) are also listed in table 1.

Several factors can give rise to the difference in the strength of the intratrimer
and intrachain interactions found between{Mn(hfac)2}3(3R)2 and {Mn(hfac)2}(3R). The
difference in the Mn(1)–O–N angles seems not to be dominant, as it favours more the latter
compound to have stronger exchange interactions. This will probably be of importance for
ions withL 6= 0. In {Mn(hfac)2}3(3R)2 the Mn(1)–O distances are however slightly shorter
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Figure 8. The temperature variation of the productχtotT for the equimolar{Mn(hfac)2}(3R)
complex in the paramagnetic temperature range. Open circles show the experimental data. The
solid and dashed lines show the temperature dependences calculated by taking into account the
effect of trimerization (respectively with and without interchain exchange interaction).

than in {Mn(hfac)2}(3R): 2.10(1) Å versus 2.14(1)Å. This is an isotropic mechanism,
which might be considered as being responsible for the observed regularity.

4.3. Determination of the anisotropy constants

The magnetic anisotropy of{Mn(hfac)2}3(3R)2 appears to be not very high compared to
those of the other, metallic as well as non-metallic, magnetic compounds with zero 3d orbital
moments. A rough estimate, made on the basis of the area lying between the magnetization
curves along the easy and hard axes, shows that the energy associated with the anisotropy,
EA, is more than one order of magnitude less than the total magnetic energy. Hence,EA

can be expressed through the phenomenological anisotropy constantsKm
n by expansion into

a series in the polar(θ) and azimuthal(φ) coordinate angles of the magnetization vector
M (Franse and Radwanski 1993):

EA =
∞∑
n=0

n∑
m=0

Km
n sinn θ cosmφ.

The number of the non-zero terms is limited by symmetry. For the case of orthorhombic
crystals the anisotropy energy takes the form

EA = K1 sin2 θ +K2 sin4 θ + · · · +K ′1 sin2 θ cos 2φ +K ′2 sin4 θ cos 2φ + · · · (6)

and must therefore be described in the second approximation using four anisotropy constants.
The angular dependence ofEA can hence be calculated if the values ofKi are known.

The maximal anisotropy energy corresponding to the difference between the magnetization
processes along the easy and hard axes is in this notationEeh= K1+K2−K ′1−K ′2.
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Figure 9. The temperature dependence of the anisotropy constants of{Mn(hfac)2}3(3R)2.
Dotted and dashed lines correspond to the temperature dependences approximated asM3

Mn (K1)

andM10
Mn (K2 andK ′2) and normalized to 0 K, and the solid lines forK1 andK ′1 are normalized

M3
S(T ) dependencies (for details, see the text).

In this work, the anisotropy constants of{Mn(hfac)2}3(3R)2 were determined in terms of
the Sucksmith–Thompson method by analysingH/M versusM2 plots along the intermediate
(φ = 0) and hard(φ = π/2) directions (Sucksmith and Thompson 1954). These plots were
found to vary linearly in the field regionH < HA (HA is the anisotropy field) with non-
zero slopes with respect to theM2 coordinate axis, indicating that the terms of higher
order than sin4 θ in equation (6) are negligible. In figure 9 the temperature dependences of
Ki for the {Mn(hfac)2}3(3R)2 complex are presented. They decrease monotonically with
increasing temperature without any changes in sign. The numerical values of the anisotropy
constants at the lowest temperature measured, 1.8 K, areK1 = +3.2 × 104 erg cm−3,
K ′1 = −2.0× 104 erg cm−3, K2 = +6.0× 103 erg cm−3 andK ′2 = −4.2× 103 erg cm−3.

Several sources can contribute to the anisotropy of magnetic crystals. All of the models
relate the temperature dependence ofKi to that of the spontaneous magnetization. Numerous
data on different Mn2+-based compounds and radical complexes show that the Heisenberg
model dealing with isotropic exchange interactions describes well the magnetic behaviour
of these compounds (Carlin 1986). Hence, anisotropy of the exchange interaction seems to
be unimportant in the{Mn(hfac)2}3(3R)2 complex. In the magnetic compounds containing
atoms with a non-zero orbital magnetic moment, the crystallographic magnetic anisotropy is
considered to be caused by the single-ion mechanism. The source of this anisotropy is the
interaction of the non-spherical 3d, 4f or 5f electronic shells with the crystal electric field
via the spin–orbit coupling. The value of the anisotropy energy reaches 107–108 erg cm−3

in f compounds and usually is substantially smaller(106–107 erg cm−3) in those based on 3d
elements (see, e.g., Franse and Radwanski 1993). The compounds with S ions, Fe3+, Mn2+

and Gd3+, with spherical magnetic electronic shells exhibit substantially lower anisotropy,
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Figure 10. The angular dependence of the low-field magnetization of{Mn(hfac)2}3(3R)2 at
different temperatures in the paramagnetic region measured in the(ac) crystallographic plane.

as in the first approximation the crystal field does not influence the orientation of their
atomic magnetic moments.

In the case of Mn2+, the single-ion contribution appears in the second-order perturbation
theory only and should therefore be small. This hinders the analysis of magnetic anisotropy
in S-ion compounds since different mechanisms contributing to the anisotropy energy
become comparable and cannot be separated easily. In the circumstances, the magnetic
dipole–dipole interaction either between the Mn2+ spins or between the Mn2+ and (3R)
spins is a factor which cannot be neglected when considering the magnetic anisotropy of
{Mn(hfac)2}3(3R)2. Bivalent manganese has the highest spin moment, 5/2, among the 3d
transition elements, which favours a large strength of the dipole–dipole interaction.

Some conclusions about the nature of the magnetic anisotropy of{Mn(hfac)2}3(3R)2
can be reached by considering the temperature dependence of the anisotropy constants.
In crystals with uniaxial anisotropy, the single-ion mechanism predicts a low-temperature
variation ofKi proportional toM3 (for i = 1) andM10 (for i = 2). Assuming that the
observed magnetic anisotropy is mainly associated with the Mn sublattice, in figure 9 the
temperature dependence of the anisotropy constantK1 is compared withM3

Mn(T ) where
bothMS+ 6B3/2 (dashed line) andB5/2 (dotted line) are used asMMn. As can be seen, the
curves do not match the experimental one. The same holds forK ′1. Note, however, that at
low temperatures the second-order anisotropy constants can be approximated satisfactorily
by theM10

Mn(T ) dependencies in accordance with the single-ion mechanism.
The temperature variation of the first-order constants is well approximated byM3

S(T ), the
third power of the net magnetization. This fact shows that the Mn contribution alone cannot
explain the observed magnetic anisotropy of{Mn(hfac)2}3(3R)2, if we are to remain within
the scope of the single-ion model. The anisotropic term of the dipole–dipole interaction for
collinear alignment of the magnetic momentsµi andµj can be written as

EDA =
(∑
i 6=j

µiµj

R3
ij

)
sin2ψ (7)
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where theRij are the interatomic distances andψ is the angle thatµi andµj make with
Rij . Following equation (7), the second-order constantsK2 andK ′2 must be equal to zero in
{Mn(hfac)2}3(3R)2. This is an important argument for accepting the existence of a single-ion
contribution to the magnetic anisotropy of{Mn(hfac)2}3(3R)2. An exact calculation of the
dipole–dipole interaction in this compound cannot easily be made, since the spin density
of the radical is spatially substantially delocalized. Nevertheless, the anisotropy energy
1Eeh = 6.2× 104 erg cm−3 ≈ 5.6× 10−17 erg/Mn ion observed for{Mn(hfac)2}3(3R)2
at 1.8 K is of the same order of magnitude as that for other Mn compounds where the
dipole–dipole interaction was taken into consideration in order to explain the magnetic
anisotropy (Carlin 1986, Wonsowski 1971). The situation with{Mn(hfac)2}3(3R)2 has
some similarity with that for the chain compound MnMn(EDTA)× 9H2O (Borr̃as-Almenar
et al 1991) in which both of the mechanisms were found to be of importance. As for
MnMn(EDTA)× 9H2O, Mn ions in{Mn(hfac)2}3(3R)2 occupy two inequivalent positions
with different local symmetries and can therefore give different contributions to the dipole–
dipole and single-ion anisotropy energies.

Finally, we note that in spite of the apparently simple behaviour of the anisotropic
characteristics, some properties of{Mn(hfac)2}3(3R)2 require investigation in more detail.
This concerns, in particular, the anisotropy of the paramagnetic susceptibility. As can
be seen from figure 10, where the angular dependence of the magnetization at 500 Oe
in the (ac) crystallographic plane is presented, a considerable difference exists above
TC. The ratio1χ/χ = (χeasy− χintermediate)/χeasy ≈ 18% at 48 K drops rapidly with
increasing temperature (12% at 50 K) and can hardly be detected above 60 K. Although
this anisotropy can also be attributed to the dipole–dipole interaction as was concluded for
some other compounds containing bivalent manganese, e.g. (CH3)4NMnCl3 (Walker et al
1972), detailed calculations are desirable in order to ascertain whether the single-ion splitting
of the Mn levels can give rise to this anisotropy.

5. Conclusions

The magnetic properties of the ferrimagnetic three-dimensional metal–radical complex
{Mn(hfac)2}3(3R)2 can be adequately described in the exchange approximation assuming
that two magnetic sublattices, one-dimensional ferrimagnetic· · · –Mn(1)–(3R)–Mn(1)– · · ·
chains with four-spin periodicity and Mn(2) ions, form a collinear ferrimagnetic structure
with a positive exchange coupling. Due to a strong exchange interaction between Mn(1)
and terminal N–O groups within the chain, it can be considered approximately as a two-spin
ferrimagnetic chain made up of middle nitroxide groups(S = 1/2) antiferromagnetically
coupled with trimer spin species withS = 3/2.

The energy of the magnetic anisotropy of{Mn(hfac)2}3(3R)2 attains 6.2×104 erg cm−3

at low temperatures and is determined both by the magnetic dipole–dipole interaction and
the manganese zero-field level splitting (the single-ion mechanism).
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